"how numbers are stored and used in computers"
The binomial coefficient, also known as "n choose k", calculates the number of ways to choose
The closed form solution to calculate the binomial coefficient given
However, this formula is inefficient for large values of
A better implementation is to use dynamic programming to calculate the binomial coefficient. This is more efficient because it avoids calculating factorials and only calculates the necessary values.
code.ts1/** 2 * Calculate the binomial coefficient (n choose k) 3 * 4 * @param {Number} available choices 5 * @param {Number} number chosen 6 * @return {Number} number of possible choices 7 */ 8function binomialCoefficient(n: number, k: number) { 9 const arr:number[][] = []; 10 11 function binomial(n: number, k: number) { 12 if (n >= 0 && k === 0) return 1; 13 if (n === 0 && k > 0) return 0; 14 if (arr[n] && arr[n][k] > 0) return arr[n][k]; 15 if (!arr[n]) arr[n] = []; 16 17 arr[n][k] = binomial(n - 1, k - 1) + binomial(n - 1, k); 18 return arr[n][k]; 19 } 20 21 return binomial(n, k); 22};