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ABSTRACT

Multipliers are the most space and power-hungry arithmetic operators of the digi-
tal implementation of deep neural networks. We train a set of state-of-the-art neu-
ral networks (Maxout networks) on three benchmark datasets: MNIST, CIFAR-10
and SVHN. They are trained with three distinct formats: floating point, fixed point
and dynamic fixed point. For each of those datasets and for each of those formats,
we assess the impact of the precision of the multiplications on the final error after
training. We find that very low precision is sufficient not just for running trained
networks but also for training them. For example, it is possible to train Maxout
networks with 10 bits multiplications.

1 INTRODUCTION

The training of deep neural networks is very often limited by hardware. Lots of previous works
address the best exploitation of general-purpose hardware, typically CPU clusters (Dean et al.| 2012)
and GPUs (Coates et al.|, 2009; Krizhevsky et al.| [2012a). Faster implementations usually lead to
state of the art results (Dean ef al.l 2012; | Krizhevsky et al.l 2012a).

Actually, such approaches always consist in adapting the algorithm to best exploit state of the art
general-purpose hardware. Nevertheless, some dedicated deep learning hardware is appearing as
well. FPGA and ASIC implementations claim a better power efficiency than general-purpose hard-
ware (Kim et al.| [2009} [Farabet et al.l 2011; [Pham et al.l 2012; |Chen et al., 2014ab)). In contrast
with general-purpose hardware, dedicated hardware such as ASIC and FPGA enables to build the
hardware from the algorithm.

Hardware is mainly made out of memories and arithmetic operators. Multipliers are the most space
and power-hungry arithmetic operators of the digital implementation of deep neural networks. The
objective of this article is to assess the possibility to reduce the precision of the multipliers for deep
learning:

e We train deep neural networks with low precision multipliers and high precision accumu-
lators (Section 2)).

e We carry out experiments with three distinct formats:
1. Floating point (Section 3)
2. Fixed point (Section )
3. Dynamic fixed point, which we think is a good compromise between floating and fixed
points (Section 3))
e We use a higher precision for the parameters during the updates than during the forward
and backward propagations (Section [6).

e Maxout networks (Goodfellow ef al., [2013al) are a set of state-of-the-art neural networks
(Section[7). We train Maxout networks with slightly less capacity than [Goodfellow et al.
(2013a) on three benchmark datasets: MNIST, CIFAR-10 and SVHN (Section E[)
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e For each of the three datasets and for each of the three formats, we assess the impact of
the precision of the multiplications on the final error of the training. We find that very low
precision multiplications are sufficient not just for running trained networks but also for
training them (Section[9). We made our code available|T]

2  MULTIPLIER-ACCUMULATORS

Multiplier (bits)  Accumulator (bits)  Adaptive Logic Modules (ALMs)

32 32 504
16 32 138
16 16 128

Table 1: Cost of a fixed point multiplier-accumulator on a Stratix V Altera FPGA.

Algorithm 1 Forward propagation with low precision multipliers.

for all layers do
Reduce the precision of the parameters and the inputs
Apply convolution or dot product (with high precision accumulations)
Reduce the precision of the weighted sums
Apply activation functions
end for
Reduce the precision of the outputs

Applying a deep neural network (DNN) mainly consists in convolutions and matrix multiplications.
The key arithmetic operation of DNNss is thus the multiply-accumulate operation. Artificial neurons
are basically multiplier-accumulators computing weighted sums of their inputs.

The cost of a fixed point multiplier varies as the square of the precision (of its operands) for small
widths while the cost of adders and accumulators varies as a linear function of the precision (David
et al.,2007). As a result, the cost of a fixed point multiplier-accumulator mainly depends on the
precision of the multiplier, as shown in table [ In modern FPGAs, the multiplications can also
be implemented with dedicated DSP blocks/slices. One DSP block/slice can implement a single
27 x 27 multiplier, a double 18 x 18 multiplier or a triple 9 x 9 multiplier. Reducing the precision
can thus lead to a gain of 3 in the number of available multipliers inside a modern FPGA.

In this article, we train deep neural networks with low precision multipliers and high precision
accumulators, as illustrated in Algorithm

3 FLOATING POINT

Format Total bit-width ~ Exponent bit-width ~ Mantissa bit-width
Double precision floating point 64 11 52
Single precision floating point 32 8 23
Half precision floating point 16 5 10

Table 2: Definitions of double, single and half precision floating point formats.

Floating point formats are often used to represent real values. They consist in a sign, an exponent,
and a mantissa, as illustrated in figure[T] The exponent gives the floating point formats a wide range,
and the mantissa gives them a good precision. One can compute the value of a single floating point
number using the following formula:

value = (,1)sign % (1 + ma;tgs&z) % 2(6Iponent7127)

"https://github.com/MatthieuCourbariaux/deep-learning-multipliers
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Figure 1: Comparison of the floating point and fixed point formats.

Table 2] shows the exponent and mantissa widths associated with each floating point format. In our
experiments, we use single precision floating point format as our reference because it is the most
widely used format in deep learning, especially for GPU computation. We show that the use of half
precision floating point format has little to no impact on the training of neural networks. At the time
of writing this article, no standard exists below the half precision floating point format.

4 FIXED POINT

Fixed point formats consist in a signed mantissa and a global scaling factor shared between all fixed
point variables. The scaling factor can be seen as the position of the radix point. It is usually fixed,
hence the name “fixed point”. Reducing the scaling factor reduces the range and augments the
precision of the format. The scaling factor is typically a power of two for computational efficiency
(the scaling multiplications are replaced with shifts). As a result, fixed point format can also be seen
as a floating point format with a unique shared fixed exponent , as illustrated in figure|l| Fixed point
format is commonly found on embedded systems with no FPU (Floating Point Unit). It relies on
integer operations. It is hardware-wise cheaper than its floating point counterpart, as the exponent is
shared and fixed.

5 DYNAMIC FIXED POINT

Algorithm 2 Policy to update a scaling factor.

Require: a matrix M, a scaling factor s;, and a maximum overflow rate 7,
Ensure: an updated scaling factor s, 1.
if the overflow rate of M > r,,,,. then
Sta1 2 X St
else if the overflow rate of 2 x M < r,,.. then
St4+1 < St/2
else
St+1 < St
end if

When training deep neural networks,

1. activations, gradients and parameters have very different ranges.

2. gradients ranges slowly diminish during the training.

As a result, the fixed point format, with its unique shared fixed exponent, is ill-suited to deep learn-
ing.
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The dynamic fixed point format (Williamsonl |1991)) is a variant of the fixed point format in which
there are several scaling factors instead of a single global one. Those scaling factors are not fixed.
As such, it can be seen as a compromise between floating point format - where each scalar variable
owns its scaling factor which is updated during each operations - and fixed point format - where
there is only one global scaling factor which is never updated. With dynamic fixed point, a few
grouped variables share a scaling factor which is updated from time to time to reflect the statistics
of values in the group.

In practice, we associate each layer’s weights, bias, weighted sum, outputs (post-nonlinearity) and
the respective gradients vectors and matrices with a different scaling factor. Those scaling factors
are initialized with a global value. The initial values can also be found during the training with a
higher precision format. During the training, we update those scaling factors at a given frequency,
following the policy described in Algorithm[2]

6 UPDATES VS. PROPAGATIONS

We use a higher precision for the parameters during the updates than during the forward and back-
ward propagations, respectively called fprop and bprop. The idea behind this is to be able to accu-
mulate small changes in the parameters (which requires more precision) and while on the other hand
sparing a few bits of memory bandwidth during fprop. This can be done because of the implicit
averaging performed via stochastic gradient descent during training:

. 0C,(6y)
00

where Cy(6,) is the cost to minimize over the minibatch visited at iteration ¢ using 6, as parameters
and e is the learning rate. We see that the resulting parameter is the sum
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The terms of this sum are not statistically independent (because the value of §; depends on the value
of 6;_1) but the dominant variations come from the random sample of examples in the minibatch
(6 moves slowly) so that a strong averaging effect takes place, and each contribution in the sum is
relatively small, hence the demand for sufficient precision (when adding a small number with a large
number).

7 MAXOUT NETWORKS

A Maxout network is a multi-layer neural network that uses maxout units in its hidden layers. A
maxout unit outputs the maximum of a set of k dot products between k weight vectors and the input
vector of the unit (e.g., the output of the previous layer):

! k ! -1
h; = f?jfi(bi,j Fwi;h)
where h! is the vector of activations at layer [ and weight vectors w ; and biases bl are the param-
eters of the j-th filter of unit ¢ on layer [.

A maxout unit can be seen as a generalization of the rectifying units (Jarrett et al., 2009; Nair and
Hinton| 2010} Glorot ef al., 2011} Krizhevsky er al. 2012b)

hl = max(0, b, 4+ w! - K1)

which corresponds to a maxout unit when k£ = 2 and one of the filters is forced at 0 (Goodfellow
et al.,|2013a). Combined with dropout, a very effective regularization method (Hinton et al.||[2012),
maxout networks achieved state-of-the-art results on a number of benchmarks (Goodfellow et al.,
2013a)), both as part of fully connected feedforward deep nets and as part of deep convolutional nets.
The dropout technique provides a good approximation of model averaging with shared parameters
across an exponentially large number of networks that are formed by subsets of the units of the
original noise-free deep network.
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8 BASELINE RESULTS

We train Maxout networks with slightly less capacity than|Goodfellow et al.{(2013a)) on three bench-
mark datasets: MNIST, CIFAR-10 and SVHN. In Section |9 we use the same hyperparameters as in
this section to train Maxout networks with low precision multiplications.

Dataset Dimension Labels Training set Test set
MNIST 784 (28 x 28 grayscale) 10 60K 10K
CIFAR-10 3072 (32 x 32 color) 10 50K 10K
SVHN 3072 (32 x 32 color) 10 604K 26K

Table 3: Overview of the datasets used in this paper.

Format Prop. Up. PIMNIST MNIST CIFAR-10 SVHN
Goodfellow et al.| (2013a) 32 32 0.94% 045%  11.68% 2.47%
Single precision floating point 32 32 1.05% 0.51% 14.05% 2.71%
Half precision floating point 16 16 1.10% 0.51% 14.14% 3.02%
Fixed point 20 20 1.39% 0.57%  15.98% 2.97%
Dynamic fixed point 10 12 1.28% 0.59% 14.82% 4.95%

Table 4: Test set error rates of single and half floating point formats, fixed and dynamic fixed
point formats on the permutation invariant (PI) MNIST, MNIST (with convolutions, no distortions),
CIFAR-10 and SVHN datasets. Prop. is the bit-width of the propagations and Up. is the bit-
width of the parameters updates. The single precision floating point line refers to the results of our
experiments. It serves as a baseline to evaluate the degradation brought by lower precision.

8.1 MNIST

The MNIST (LeCun et all 1998) dataset is described in Table We do not use any data-
augmentation (e.g. distortions) nor any unsupervised pre-training. We simply use minibatch stochas-
tic gradient descent (SGD) with momentum. We use a linearly decaying learning rate and a linearly
saturating momentum. We regularize the model with dropout and a constraint on the norm of each
weight vector, as in (Srebro and Shraibman, 2005).

We train two different models on MNIST. The first is a permutation invariant (PI) model which is
unaware of the structure of the data. It consists in two fully connected maxout layers followed by a
softmax layer. The second model consists in three convolutional maxout hidden layers (with spatial
max pooling on top of the maxout layers) followed by a densely connected softmax layer.

This is the same procedure as in |Goodfellow ez al.|(2013a)), except that we do not train our model
on the validation examples. As a consequence, our test error is slightly larger than the one reported
in|Goodfellow et al.|(2013a). The final test error is in Table

8.2 CIFAR-10

Some comparative characteristics of the CIFAR-10 (Krizhevsky and Hinton, |2009)) dataset are given
in Table 3] We preprocess the data using global contrast normalization and ZCA whitening. The
model consists in three convolutional maxout layers, a fully connected maxout layer, and a fully
connected softmax layer. We follow a similar procedure as with the MNIST dataset. This is the
same procedure as in|Goodfellow ef al.|(2013al), except that we reduced the number of hidden units
and that we do not train our model on the validation examples. As a consequence, our test error is
slightly larger than the one reported in|Goodfellow et al.|(2013a). The final test error is in Table
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8.3 STREET VIEW HOUSE NUMBERS

The SVHN (Netzer et al., 2011) dataset is described in Table E} We applied local contrast nor-
malization preprocessing the same way as |Zeiler and Fergus| (2013). The model consists in three
convolutional maxout layers, a fully connected maxout layer, and a fully connected softmax layer.
Otherwise, we followed the same approach as on the MNIST dataset. This is the same procedure as
in |Goodfellow et al.| (2013a), except that we reduced the length of the training. As a consequence,
our test error is bigger than the one reported in (Goodfellow ef al.| (2013a). The final test error is in
Table[d

9 LOW PRECISION RESULTS

Normalized final test error = f(Radix point position and dataset)
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Figure 2: Final test error depending on the radix point position (5 means after the 5th most sig-
nificant bit) and the dataset (permutation invariant MNIST and CIFAR-10). The final test errors
are normalized, that is to say divided by the dataset single float test error. The propagations and
parameter updates bit-widths are both set to 31 bits (32 with the sign).

Normalized final test error = f(Propagation bit-width, storing format and dataset)
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Figure 3: Final test error depending on the propagations bit-width, the format (dynamic fixed or
fixed point) and the dataset (permutation invariant MNIST, MNIST and CIFAR-10). The final test
errors are normalized, which means that they are divided by the dataset single float test error. For
both formats, the parameter updates bit-width is set to 31 bits (32 with the sign). For fixed point
format, the radix point is set after the fifth bit. For dynamic fixed point format, the maximum
overflow rate is set to 0.01%.
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Normalized final test error = f(Parameters updates bit-width, storing format and dataset)
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Figure 4: Final test error depending on the parameter updates bit-width, the format (dynamic fixed
or fixed point) and the dataset (permutation invariant MNIST, MNIST and CIFAR-10). The final test
errors are normalized, which means that they are divided by the dataset single float test error. For
both formats, the propagations bit-width is set to 31 bits (32 with the sign). For fixed point format,
the radix point is set after the fifth bit. For dynamic fixed point format, the maximum overflow rate
is set to 0.01%.

Normalized final test error = f(Maximum overflow rate and propagation bit-width)
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Figure 5: Final test error depending on the maximum overflow rate and the propagations bit-width.
The final test errors are normalized, which means that they are divided by the dataset single float
test error. The parameter updates bit-width is set to 31 bits (32 with the sign).

9.1 FLOATING POINT

Half precision floating point format has little to no impact on the test set error rate, as shown in Table
[ We conjecture that a high-precision fine-tuning could recover the small degradation of the error
rate.

9.2 FIXED POINT

The optimal radix point position in fixed point is after the fifth (or arguably the sixth) most important
bit, as illustrated in Figure[2] The corresponding range is approximately [-32,32]. The corresponding
scaling factor depends on the bit-width we are using. The minimum bit-width for propagations in
fixed point is 19 (20 with the sign). Below this bit-width, the test set error rate rises very sharply, as
illustrated in Figure 3] The minimum bit-width for parameter updates in fixed point is 19 (20 with
the sign). Below this bit-width, the test set error rate rises very sharply, as illustrated in Figure [4]
Doubling the number of hidden units does not allow any further reduction of the bit-widths on the
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permutation invariant MNIST. In the end, using 19 (20 with the sign) bits for both the propagations
and the parameter updates has little impact on the final test error, as shown in Table

9.3 DYNAMIC FIXED POINT

We find the initial scaling factors by training with a higher precision format. Once those scaling
factors are found, we reinitialize the model parameters. We update the scaling factors once every
10000 examples. Augmenting the maximum overflow rate allows us to reduce the propagations
bit-width but it also significantly augments the final test error rate, as illustrated in Figure[5] As a
consequence, we use a low maximum overflow rate of 0.01% for the rest of the experiments. The
minimum bit-width for the propagations in dynamic fixed point is 9 (10 with the sign). Below this
bit-width, the test set error rate rises very sharply, as illustrated in Figure 3] The minimum bit-width
for the parameter updates in dynamic fixed point is 11 (12 with the sign). Below this bit-width,
the test set error rate rises very sharply, as illustrated in Figure |4l Doubling the number of hidden
units does not allow any further reduction of the bit-widths on the permutation invariant MNIST. In
the end, using 9 (10 with the sign) bits for the propagations and 11 (12 with the sign) bits for the
parameter updates has little impact on the final test error, with the exception of the SVHN dataset,
as shown in Table[d] This is significantly better than fixed point format, which is consistent with our
predictions of Section [5]

10 RELATED WORKS

Vanhoucke ef al.| (2011) use 8 bits linear quantization to store activations and weights. Weights are
scaled by taking their maximum magnitude in each layer and normalizing them to fall in the [-128,
127] range. The total memory footprint of the network is reduced by between 3x and 4x. This
is very similar to the dynamic fixed point format we use (Section [3). However, [Vanhoucke et al.
(2011) only apply already trained neural networks while we actually frain them.

Training neural networks with low precision arithmetic has already been done in previous works
(Holt and Baker, (1991} |Presley and Haggard| [1994} |Simard and Graf, [1994; |Wawrzynek et al.,
1996; Savich et al., 2007) Our work is nevertheless original in several regards:

e We are the first to train deep neural networks with the dynamic fixed point format.
e We use a higher precision for the weights during the updates.

e We train some of the latest models on some of the latest benchmarks.

11 CONCLUSION AND FUTURE WORKS

‘We have shown that:

e Very low precision multipliers are sufficient for training deep neural networks.
e Dynamic fixed point seems well suited for training deep neural networks.

e Using a higher precision for the parameters during the updates helps.
Our work can be exploited to:

e Optimize memory usage on general-purpose hardware (Gray et al.,[2015).

e Design very power-efficient hardware dedicated to deep learning.
There is plenty of room for extending our work:

e Other tasks than image classification.

2 A very recent work (Gupta et al., [2015) also trains neural networks with low precision. The authors
propose to replace round-to-nearest with stochastic rounding, which allows to reduce the numerical precision
to 16 bits while using the fixed point format. It would be very interesting to combine dynamic fixed point and
stochastic rounding.
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e Other models than Maxout networks.

e Other formats than floating point, fixed point and dynamic fixed point.
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