"how numbers are stored and used in computers"
The General Number Field Sieve (GNFS) is currently the most efficient algorithm for factoring integers larger than 100 digits. It is a generalization of the Special Number Field Sieve and represents the state of the art in integer factorization. The algorithm combines techniques from algebraic number theory, linear algebra, and sieving methods.
The GNFS works by finding pairs of integers that are smooth over two different number fields. These relations are then used to construct a system of linear equations, whose solution leads to a non-trivial factorization of the target number.
The algorithm is based on the following principle: if we can find integers x and y such that:
and
The time complexity of the GNFS is:
The space complexity is
code.js1function generalNumberFieldSieve(n) { 2 // Polynomial selection 3 const polynomial = selectPolynomial(n); 4 5 // Factor base generation 6 const rationalFactorBase = generateRationalFactorBase(n); 7 const algebraicFactorBase = generateAlgebraicFactorBase(polynomial); 8 9 // Sieving phase 10 const relations = []; 11 const sieveArray = new Array(sieveSize).fill(0); 12 13 // Rational sieving 14 for (const p of rationalFactorBase) { 15 const roots = findRoots(n, p); 16 for (const root of roots) { 17 for (let j = root; j < sieveSize; j += p) { 18 sieveArray[j] += Math.log(p); 19 } 20 } 21 } 22 23 // Algebraic sieving 24 for (const p of algebraicFactorBase) { 25 const roots = findAlgebraicRoots(polynomial, p); 26 for (const root of roots) { 27 for (let j = root; j < sieveSize; j += p) { 28 sieveArray[j] += Math.log(p); 29 } 30 } 31 } 32 33 // Finding smooth numbers 34 for (let i = 0; i < sieveSize; i++) { 35 if (isSmooth(sieveArray[i], threshold)) { 36 const relation = createRelation(i, polynomial); 37 if (relation) { 38 relations.push(relation); 39 } 40 } 41 } 42 43 // Linear algebra phase 44 const matrix = buildMatrix(relations); 45 const solution = solveLinearSystem(matrix); 46 47 // Factorization phase 48 return findFactors(n, relations, solution); 49} 50 51// Helper functions 52function selectPolynomial(n) { 53 // Select an appropriate polynomial for the number field 54} 55 56function generateRationalFactorBase(n) { 57 // Generate the rational factor base 58} 59 60function generateAlgebraicFactorBase(polynomial) { 61 // Generate the algebraic factor base 62} 63 64function findRoots(n, p) { 65 // Find roots modulo p 66} 67 68function findAlgebraicRoots(polynomial, p) { 69 // Find roots of the polynomial modulo p 70} 71 72function isSmooth(value, threshold) { 73 // Check if a number is smooth 74} 75 76function createRelation(x, polynomial) { 77 // Create a relation from a smooth number 78} 79 80function buildMatrix(relations) { 81 // Build the matrix for linear algebra phase 82} 83 84function solveLinearSystem(matrix) { 85 // Solve the system of linear equations 86} 87 88function findFactors(n, relations, solution) { 89 // Use the solution to find factors 90}
The GNFS is typically used for very large numbers:
code.js1const n = 1234567890123456789012345678901234567890123456789012345678901234567890n; 2const factors = generalNumberFieldSieve(n); 3console.log(factors);
Several optimizations can improve the performance of the GNFS:
The main limitations of the GNFS are:
The GNFS is particularly useful in: